Improved CNN-Based Hashing for Encrypted Image Retrieval
نویسندگان
چکیده
As more and image data are stored in the encrypted form cloud computing environment, it has become an urgent problem that how to efficiently retrieve images on encryption domain. Recently, Convolutional Neural Network (CNN) features have achieved promising performance field of retrieval, but high dimension CNN will cause low retrieval efficiency. Also, is not suitable directly apply them for To solve above issues, this paper proposes improved CNN-based hashing method retrieval. First, size increased inputted into improve representation ability. Then, a lightweight module introduced replace part modules reduce parameters computational cost. Finally, hash layer added generate compact binary code. In process, code used which greatly improves The experimental results show scheme allows effective efficient images.
منابع مشابه
CNN Based Hashing for Image Retrieval
Along with data on the web increasing dramatically, hashing is becoming more and more popular as a method of approximate nearest neighbor search. Previous supervised hashing methods utilized similarity/dissimilarity matrix to get semantic information. But the matrix is not easy to construct for a new dataset. Rather than to reconstruct the matrix, we proposed a straightforward CNN-based hashing...
متن کاملA Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval
Nowadays, with huge progress in digital imaging, new image processing methods are needed to manage digital images stored on disks. Image retrieval has been one of the most challengeable fields in digital image processing which means searching in a big database in order to represent similar images to the query image. Although many efficient researches have been performed for this topic so far, t...
متن کاملH-CNN: Spatial Hashing Based CNN for 3D Shape Analysis
We present a novel spatial hashing based data structure to facilitate 3D shape analysis using convolutional neural networks (CNNs). Our method well utilizes the sparse occupancy of 3D shape boundary and builds hierarchical hash tables for an input model under different resolutions. Based on this data structure, we design two efficient GPU algorithms namely hash2col and col2hash so that the CNN ...
متن کاملAverage Biased ReLU Based CNN Descriptor for Improved Face Retrieval
The convolutional neural networks (CNN) like AlexNet, GoogleNet, VGGNet, etc. have been proven as the very discriminative feature descriptor for many computer vision problems. The trained CNN model over one dataset performs reasonably well over another dataset of similar type and outperforms the hand-designed feature descriptor. The Rectified Linear Unit (ReLU) layer discards some information i...
متن کاملShape - based Image Retrieval Using Geometric Hashing
We present a general strategy for shape-based image retrieval which considers similarity modulo a given transformation group G. The shape content of an image is summarized by recording what geometric primitives, such as line segments and circular arcs, t where in the image. Geometric hashing is used to compute a set of primitive features which are invariant under a G-transformation of the image...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Security and Communication Networks
سال: 2021
ISSN: ['1939-0122', '1939-0114']
DOI: https://doi.org/10.1155/2021/5556634